Optical Searches for Baryonic Dark Matter

Computer Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Machos, Microlensing, Red Dwarfs

Scientific paper

Microlensing results suggest that a good fraction of the halo is composed of massive chunks (0.1-1 Msolar) called MACHOs. I examine several optical searches for dim stars to constrain the local density of MACHOs. These searches show that (1) there are few red dwarfs in the galactic halo, and (2) they suggest that there are few brown dwarfs. I also find that (3) there may be sufficiently many white dwarfs in the halo to account for the microlensing results, but only if certain interesting conditions are met. (1) I examine a deep search for halo red dwarfs (Bahcall, Flynn, Gould & Kirhakos 1994). Using new stellar models and parallax observations of low mass, low metallicity stars, I find the halo red dwarf density to be <1% of the halo, while my best estimate of this value is 0.14-0.37%. (2) I derive mass functions (MF) for halo red dwarfs (the faintest hydrogen burning stars) and then extrapolate to place limits on the total mass of halo brown dwarfs (stars not quite massive enough to burn hydrogen). I find that the MF for halo red dwarfs cannot rise more quickly than 1/m2 as one approaches the hydrogen burning limit. Using recent results from star formation theory, I extrapolate the MF into the brown-dwarf regime. Likely extrapolations imply that the total mass of brown dwarfs in the halo is less than ~3% of the local mass density of the halo (~0.3% for the more realistic models I consider). My limits apply to brown dwarfs in the halo that come from the same stellar population as the red dwarfs. (3) A ground based search by Liebert, Dahn & Monet (1988) and a search of the Hubble Deep Field by Flynn, Bahcall & Gould (1996) have found no evidence for a substantial halo population of white dwarfs, implying that the putative halo population is either dim enough or sparse enough to elude detection. I use white dwarf luminosity functions calculated from various main sequence progenitor mass functions to re-examine the implications of these searches in light of recent microlensing results. I show that the minimum age of the white dwarf population depends upon assumptions regarding the initial mass function, atmospheric composition, and their total density. When I compare various theoretical white dwarf luminosity functions in which I vary these three parameters with the non detections of Liebert et al. and Flynn et al., I conclude that if white dwarfs constitute a significant portion of the halo then (I) the Universe must be 11 Gyr old and (II) they must have helium dominated atmospheres. Thus, white dwarfs could be the MACHOs and could make a significant contribution to galactic dark matter.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Optical Searches for Baryonic Dark Matter does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Optical Searches for Baryonic Dark Matter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical Searches for Baryonic Dark Matter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-807774

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.