Astronomy and Astrophysics – Astrophysics – Cosmology and Extragalactic Astrophysics
Scientific paper
2010-08-19
Astrophys.J.736:88,2011
Astronomy and Astrophysics
Astrophysics
Cosmology and Extragalactic Astrophysics
12 pages, 12 Figures, 1 Table, accepted for publication in APJ
Scientific paper
10.1088/0004-637X/736/2/88
The physical mechanisms and timescales that determine the morphological signatures and the quenching of star formation of typical (~L*) elliptical galaxies are not well understood. To address this issue, we have simulated the formation of a group of galaxies with sufficient resolution to track the evolution of gas and stars inside about a dozen galaxy group members over cosmic history. Galaxy groups, which harbor many elliptical galaxies in the universe, are a particularly promising environment to investigate morphological transformation and star formation quenching, due to their high galaxy density, their relatively low velocity dispersion, and the presence of a hot intragroup medium. Our simulation reproduces galaxies with different Hubble morphologies and, consequently, enables us to study when and where the morphological transformation of galaxies takes place. The simulation does not include feedback from active galactic nuclei showing that it is not an essential ingredient for producing quiescent, red elliptical galaxies in galaxy groups. Ellipticals form, as suspected, through galaxy mergers. In contrast with what has often been speculated, however, these mergers occur at z>1, before the merging progenitors enter the virial radius of the group and before the group is fully assembled. The simulation also shows that quenching of star formation in the still star-forming elliptical galaxies lags behind their morphological transformation, but, once started, is taking less than a billion years to complete. As long envisaged the star formation quenching happens as the galaxies approach and enter the finally assembled group, due to quenching of gas accretion and (to a lesser degree) stripping. A similar sort is followed by unmerged, disk galaxies, which, as they join the group, are turned into the red-and-dead disks that abound in these environments.
Carollo Marcella C.
Feldmann Robert
Mayer Larry
No associations
LandOfFree
The Hubble Sequence in Groups: The Birth of the Early-Type Galaxies does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Hubble Sequence in Groups: The Birth of the Early-Type Galaxies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Hubble Sequence in Groups: The Birth of the Early-Type Galaxies will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-80013