Astronomy and Astrophysics – Astronomy
Scientific paper
Jun 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009apj...698.2087r&link_type=abstract
The Astrophysical Journal, Volume 698, Issue 2, pp. 2087-2092 (2009).
Astronomy and Astrophysics
Astronomy
12
Astrochemistry, Solar System: General
Scientific paper
Insoluble organic matter (IOM) in primitive carbonaceous meteorites has preserved its chemical composition and isotopic heterogeneity since the solar system formed ~4.567 billion years ago. We have identified the carrier moieties of isotopically anomalous hydrogen in IOM isolated from the Orgueil carbonaceous chondrite. Data from high spatial resolution, quantitative isotopic NanoSIMS mapping of Orgueil IOM combined with data from electron paramagnetic resonance spectroscopy reveals that organic radicals hold all the deuterium excess (relative to the bulk IOM) in distinct, micrometer-sized, D-rich hotspots. Taken together with previous work, the results indicate that an isotopic exchange reaction took place between pre-existing organic compounds characterized by low D/H ratios and D-rich gaseous molecules, such as H2D+ or HD2 +. This exchange reaction most likely took place in the diffuse outer regions of the proto-planetary disk around the young Sun, offering a model that reconciles meteoritic and cometary isotopic compositions of organic molecules.
Binet Laurent
Delpoux Olivier
Derenne Sylvie
Gourier Didier
Meibom Anders
No associations
LandOfFree
Proto-Planetary Disk Chemistry Recorded by D-Rich Organic Radicals in Carbonaceous Chondrites does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Proto-Planetary Disk Chemistry Recorded by D-Rich Organic Radicals in Carbonaceous Chondrites, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Proto-Planetary Disk Chemistry Recorded by D-Rich Organic Radicals in Carbonaceous Chondrites will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-776589