Emission Line Diagnostics of Magnetospheric Accretion in Young Stellar Objects

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

This thesis seeks to explain the nature of line emission observed in young stellar objects, and to use the lines as diagnostics of the accretion process that is central to star formation and disk evolution. The results show that the bulk of permitted line emission is produced in free-falling gas streams formed via magnetically-mediated accretion from circumstellar disks. Radiative transfer models of magnetospheric accretion have been calculated, and predicted line profiles exhibit characteristic central peaks, blueward asymmetries, and occasional redshifted absorption components. Model Balmer line fluxes are in good agreement with T Tauri star observations. However, these pure infall models do not adequately explain the extended wings seen in Hα nor the observed Balmer decrement. I present line profile observations of T Tauri stars spanning a range of accretion activity, and show that many optical atomic lines, such as Na I, O I, and Ca II, are qualitatively similar to the models. I find that several emission lines, such as the Ca II infrared triplet and Brγ, are well-correlated in luminosity with the accretion luminosity in T Tauri stars, and hence can be used as alternate calibrators of the mass accretion rate. I then employ the Brγ calibrator to determine accretion luminosities in optically invisible embedded protostars for the first time. The results show that protostellar accretion luminosities are only ~10% of their bolometric luminosities, which indicates that accretion rates are on average only a factor of ten larger than in the older, optically visible T Tauri stars. Further, more detailed models are presented, treating additional effects such as line damping and rotation, and specific comparisons to well-studied T Tauri stars are shown. Damping wings can account for the significant high-velocity emission at Hα, and produce larger Balmer decrements in better agreement with observations. Line profiles are not significantly affected by rotation at typical T Tauri rates. An extensive grid of models, in combination with detailed comparisons to observations, provides tight constraints on gas temperatures, and to some extent the magnetospheric geometry. In order to explain the empirical correlations between emission line strength and accretion luminosity, the size of the emitting region must be correlated with the accretion rate. Finally, I present models of Hα profiles and the UV/optical spectral energy distributions for two 10 Myr-old T Tauri stars in the TW Hya association. I find that the accretion rates for these stars are over one order of magnitude smaller than the mean rate for the 1 Myr T Tauri stars, indicating significant disk evolution over this time period.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Emission Line Diagnostics of Magnetospheric Accretion in Young Stellar Objects does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Emission Line Diagnostics of Magnetospheric Accretion in Young Stellar Objects, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Emission Line Diagnostics of Magnetospheric Accretion in Young Stellar Objects will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-764517

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.