Astronomy and Astrophysics – Astronomy
Scientific paper
Aug 2000
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2000aj....120.1056k&link_type=abstract
The Astronomical Journal, Volume 120, Issue 2, pp. 1056-1071.
Astronomy and Astrophysics
Astronomy
22
Galaxy: Abundances, Galaxy: Halo, Stars: Abundances, Stars: Atmospheres, Stars: Distances, Stars: Fundamental Parameters, Stars: Late-Type, Stars: Population Ii
Scientific paper
We consider the effects of recent NLTE gravities and Fe abundances on stellar [O/Fe] and [C/Fe] ratios. The NLTE parameters greatly reduce or eliminate the well-known discrepancy between CH- and C I-based C abundances in metal-poor stars and previously seen trends of atomic-based [C/Fe] and [O/Fe] with Teff. With the NLTE parameters, the metal-poor molecular-based [C/Fe] ratio maintains its increase with declining [Fe/H] this may also be demonstrated by the revised atomic-based ratios. [O/Fe] values derived from OH and O I features are considerably reduced and typically show improved agreement but are 0.1-0.2 dex larger than those exhibited by the Lick-Texas syndicate's recent [O I]-based giant determinations. The revised [O/Fe] ratios still show an increase down to at least [Fe/H]~-2 we suggest that recent field giant data show an increase with similar slope. Even adopting uniform NLTE parameters, study-to-study abundance differences can be significant; moreover, different NLTE studies yield differing gravities and Fe abundances even after taking Teff differences into account. Comparison of metal-poor giant gravities and cluster abundances with isochrones, trigonometric gravities, and near-turnoff cluster abundances yields conflicting indications about whether the evolved gravities might be underestimated as suggested for metal-poor dwarfs. Regardless, we argue that even extreme gravity revisions do not affect the [O/Fe]-[Fe/H] relation derived from the extant results. Combining what we believe the most reliable giant and dwarf data considered here, we find [O/Fe]=-0.184(+/-0.022)×[Fe/H]+0.019 with an rms scatter of only 0.13 dex; there is no indication of a break or slope change at intermediate [Fe/H]. The gentle slope is in very reasonable agreement with some chemical evolution models employing yields with small mass and metallicity dependences. Finally, two notes are made concerning Na abundance-spatial position and element-to-element correlations in M13 giants.
No associations
LandOfFree
Galactic [O/Fe] and [C/Fe] Ratios: The Influence of New Stellar Parameters does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Galactic [O/Fe] and [C/Fe] Ratios: The Influence of New Stellar Parameters, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Galactic [O/Fe] and [C/Fe] Ratios: The Influence of New Stellar Parameters will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-734883