Astronomy and Astrophysics – Astrophysics
Scientific paper
Jul 2002
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002jgra..107.1130b&link_type=abstract
Journal of Geophysical Research (Space Physics), Volume 107, Issue A7, pp. SSH 6-1, CiteID 1130, DOI 10.1029/2001JA900173
Astronomy and Astrophysics
Astrophysics
2
Interplanetary Physics: Interplanetary Shocks, Interplanetary Physics: Pickup Ions, Solar Physics, Astrophysics, And Astronomy: Coronal Mass Ejections, And Astronomy: Energetic Particles (2114)
Scientific paper
The Solar and Heliospheric Observatory/Charge, Element, and Isotope Analysis System/(Highly) Suprathermal Time of Flight ((H)STOF) mass spectrometer measures the elemental composition and the charge state distribution of ions with suprathermal energies in the range 10-4000 keV amu-1 from above the solar wind particle distribution up to low-energy flare particle energies. We analyze the time period around the large coronal mass ejection event on 2-3 May 1998. Using data from (H)STOF, we study the charge state distribution of He, the CNO group, and Fe. In addition, we investigate the energy dependence of the mean ionic charge state of Fe in the energy-per-nucleon range 12-100 keV amu-1. Furthermore, we also report energy spectra of H+, He++, and He+ and the variations in the elemental abundance ratios He/H, He/CNO, and Fe/CNO. These observations greatly extend the energy range in which particles associated with this time period have been measured. Because of their elevated energies, suprathermal particles are the prime seed population for further acceleration in gradual events. We identify interstellar pickup ions as an important nonsolar seed population. The observed low mean ionic charge states of Fe and the small Fe/CNO ratio are typical for large gradual events. The energy dependence of the Fe charge states may be a result of the presence of different iron populations or of the thermal history of the accelerated material. The temporal variations of Fe/CNO and He/CNO indicate a stronger confinement of low-rigidity particles at the acceleration site.
Bamert K.
Bogdanov Aleksey
Hilchenbach Martin
Kallenbach Reinald
Klecker Berndt
No associations
LandOfFree
Origin of the May 1998 suprathermal particles: Solar and Heliospheric Observatory/Charge, Element, and Isotope Analysis System/(Highly) Suprathermal Time of Flight results does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Origin of the May 1998 suprathermal particles: Solar and Heliospheric Observatory/Charge, Element, and Isotope Analysis System/(Highly) Suprathermal Time of Flight results, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Origin of the May 1998 suprathermal particles: Solar and Heliospheric Observatory/Charge, Element, and Isotope Analysis System/(Highly) Suprathermal Time of Flight results will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-734846