Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

33 pages, 11 figures

Scientific paper

10.1016/j.jcp.2009.05.012

We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 10^2--10^6. We discuss the application of an existing relativistic, hydrodynamic primitive-variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 10^2 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter's capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-729373

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.