Magnetorotational turbulence transports angular momentum in stratified disks with low magnetic Prandtl number but magnetic Reynolds number above a critical value

Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

17 pages, 9 figures. as accepted to ApJ

Scientific paper

The magnetorotational instability (MRI) may dominate outward transport of angular momentum in accretion disks, allowing material to fall onto the central object. Previous work has established that the MRI can drive a mean-field dynamo, possibly leading to a self-sustaining accretion system. Recently, however, simulations of the scaling of the angular momentum transport parameter $\alphaSS$ with the magnetic Prandtl number $\Prandtl$ have cast doubt on the ability of the MRI to transport astrophysically relevant amounts of angular momentum in real disk systems. Here, we use simulations including explicit physical viscosity and resistivity to show that when vertical stratification is included, mean field dynamo action operates, driving the system to a configuration in which the magnetic field is not fully helical. This relaxes the constraints on the generated field provided by magnetic helicity conservation, allowing the generation of a mean field on timescales independent of the resistivity. Our models demonstrate the existence of a critical magnetic Reynolds number $\Rmagc$, below which transport becomes strongly $\Prandtl$-dependent and chaotic, but above which the transport is steady and $\Prandtl$-independent. Prior simulations showing $\Prandtl$-dependence had $\Rmag < \Rmagc$. We conjecture that this steady regime is possible because the mean field dynamo is not helicity-limited and thus does not depend on the details of the helicity ejection process. Scaling to realistic astrophysical parameters suggests that disks around both protostars and stellar mass black holes have $\Rmag >> \Rmagc$. Thus, we suggest that the strong $\Prandtl$ dependence seen in recent simulations does not occur in real systems.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Magnetorotational turbulence transports angular momentum in stratified disks with low magnetic Prandtl number but magnetic Reynolds number above a critical value does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Magnetorotational turbulence transports angular momentum in stratified disks with low magnetic Prandtl number but magnetic Reynolds number above a critical value, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetorotational turbulence transports angular momentum in stratified disks with low magnetic Prandtl number but magnetic Reynolds number above a critical value will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-708870

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.