Kelvin-Helmholtz instability of relativistic jets - the transition from linear to nonlinear regime

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

TeX, 5 pages, no figures, lecproc.cmm included, To appear in Proceedings of ``Relativistic jets in AGNs'', Krakow, Poland, 27-

Scientific paper

The observed wiggles and knots in astrophysical jets as well as the curvilinear motion of radio emitting features are frequently interpreted as signatures of the Kelvin-Helmholtz (KH) instability (eg. Hardee 1987). We investigate the KH instability of a hydrodynamic jet composed of a relativistic gas, surrounded by a nonrelativistic external medium and moving with a relativistic bulk speed. We show basic nonlinear effects, which become important for a finite amplitude KH modes. Since the KH instability in supersonic jets involves acoustic waves over-reflected on jet boundaries, the basic nonlinear effect relies on the steepening of the acoustic wave fronts, leading to the formation of shocks. It turns our that the shocks appear predominantly in the external nonrelativistic gas, while the internal acoustic waves remain linear for a much longer time. In addition, the external medium "hardens" as soon as the boundary oscillation velocity becomes comparable to the external sound speed. On the other hand, the amplification of internal waves due to the over-reflection is limited by a nonlinearity of the Lorentz $\gamma$ factor. This implies that the sidereal oscillations of the jet boundary, resulting from the K-H instability, are limited to very small amplitudes comparable to a fraction of the jet radius.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Kelvin-Helmholtz instability of relativistic jets - the transition from linear to nonlinear regime does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Kelvin-Helmholtz instability of relativistic jets - the transition from linear to nonlinear regime, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Kelvin-Helmholtz instability of relativistic jets - the transition from linear to nonlinear regime will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-695474

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.