Surface Layer Accretion in Transitional and Conventional Disks: From Polycyclic Aromatic Hydrocarbons to Planets

Astronomy and Astrophysics – Astrophysics – Earth and Planetary Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Accepted to ApJ. Final version. Note added in proof where accretion rate estimates are given

Scientific paper

Transitional T Tauri disks have optically thin holes with radii > 10 AU, yet accrete up to the median T Tauri rate. Multiple planets inside the hole can torque the gas to high radial speeds over large distances, reducing the local surface density while maintaining accretion. Thus multi-planet systems, together with reductions in disk opacity due to grain growth, can explain how holes can be simultaneously transparent and accreting. There remains the problem of how outer disk gas diffuses into the hole. Here it has been proposed that the magnetorotational instability (MRI) erodes disk surface layers ionized by stellar X-rays. In contrast to previous work, we find that the extent to which surface layers are MRI-active is limited not by ohmic dissipation but by ambipolar diffusion, the latter measured by Am: the number of times a neutral hydrogen molecule collides with ions in a dynamical time. Simulations by Hawley & Stone showed that Am ~ 100 is necessary for ions to drive MRI turbulence in neutral gas. We calculate that in X-ray-irradiated surface layers, Am typically varies from ~0.001 to 1, depending on the abundance of charge-adsorbing polycyclic aromatic hydrocarbons, whose properties we infer from Spitzer observations. We conclude that ionization of H_2 by X-rays and cosmic rays can sustain, at most, only weak MRI turbulence in surface layers 1 to 10 g/cm^2 thick, and that accretion rates in such layers are too small compared to observed accretion rates for the majority of disks.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Surface Layer Accretion in Transitional and Conventional Disks: From Polycyclic Aromatic Hydrocarbons to Planets does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Surface Layer Accretion in Transitional and Conventional Disks: From Polycyclic Aromatic Hydrocarbons to Planets, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surface Layer Accretion in Transitional and Conventional Disks: From Polycyclic Aromatic Hydrocarbons to Planets will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-695382

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.