Protoplanetary Disk Turbulence Driven by the Streaming Instability: Linear Evolution and Numerical Methods

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Accepted for publication in ApJ (14 pages)

Scientific paper

10.1086/516729

We present local simulations that verify the linear streaming instability that arises from aerodynamic coupling between solids and gas in protoplanetary disks. This robust instability creates enhancements in the particle density in order to tap the free energy of the relative drift between solids and gas, generated by the radial pressure gradient of the disk. We confirm the analytic growth rates found by Youdin & Goodman (2005) using grid hydrodynamics to simulate the gas and, alternatively, particle and grid representations of the solids. Since the analytic derivation approximates particles as a fluid, this work corroborates the streaming instability when solids are treated as particles. The idealized physical conditions -- axisymmetry, uniform particle size, and the neglect of vertical stratification and collisions -- provide a rigorous, well-defined test of any numerical algorithm for coupled particle-gas dynamics in protoplanetary disks. We describe a numerical particle-mesh implementation of the drag force, which is crucial for resolving the coupled oscillations. Finally we comment on the balance of energy and angular momentum in two-component disks with frictional coupling. A companion paper details the non-linear evolution of the streaming instability into saturated turbulence with dense particle clumps.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Protoplanetary Disk Turbulence Driven by the Streaming Instability: Linear Evolution and Numerical Methods does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Protoplanetary Disk Turbulence Driven by the Streaming Instability: Linear Evolution and Numerical Methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Protoplanetary Disk Turbulence Driven by the Streaming Instability: Linear Evolution and Numerical Methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-691174

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.