Astronomy and Astrophysics – Astrophysics
Scientific paper
2003-06-16
Astrophys.J. 595 (2003) 1206-1221
Astronomy and Astrophysics
Astrophysics
Accepted for publication in The Astrophysical Journal, V595 #2, Oct 2003; 24 pages, 10 Figures
Scientific paper
10.1086/377436
We predict near-infrared luminosity functions of young (5 Myr to 1 Gyr) star clusters by combining evolutionary models of very low-mass ($1 M_J$ to $0.15 M_{\odot}$) dwarfs with empirical bolometric corrections. We identify several characteristic features in our results. These can be attributed to three causes: (1) deuterium burning in the most massive substellar objects; (2) methane absorption in bodies with $T_{eff}$ less than 1300 K, the temperature of the L/T transition; and (3) the formation of dust clouds and the rainout of dust at roughly the same effective temperature as methane formation. Accurate reconstruction of the substellar mass function from luminosity function observations requires that these phenomena are taken into account. At present, few observational studies extend to sufficient sensitivities to allow detection of these effects. However, the luminosity function of the young open cluster IC 2391 shows a clear peak at $M_I \sim 14$ which we attribute to the result of deuterium burning in substellar objects. The location of this feature is a strong function of age, and we estimate an age of 35 Myr for IC 2391. This is significantly younger than the 53 Myr derived from the location of the lithium depletion boundary but agrees with the main sequence turnoff age. We consider the implications of this result and our multi-band luminosity functions for future observational studies. All predicted luminosity function features are, or will be, accessible to observations using new wide-field IR imagers and the Space Infrared Telescope Facility.
Allen Peter R.
Koerner David William
Reid Iain Neill
Trilling David Eric
No associations
LandOfFree
Luminosity Functions of Young Clusters: Modeling the Substellar Mass Regime does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Luminosity Functions of Young Clusters: Modeling the Substellar Mass Regime, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Luminosity Functions of Young Clusters: Modeling the Substellar Mass Regime will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-674727