On Goncharov's regulator and higher arithmetic Chow groups

Mathematics – Algebraic Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

In this paper we show that the regulator defined by Goncharov from higher algebraic Chow groups to Deligne-Beilinson cohomology agrees with Beilinson's regulator. We give a direct comparison of Goncharov's regulator to the construction given by Burgos and Feliu. As a consequence, we show that the higher arithmetic Chow groups defined by Goncharov agree, for all projective arithmetic varieties over an arithmetic field, with the ones defined by Burgos and Feliu.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

On Goncharov's regulator and higher arithmetic Chow groups does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with On Goncharov's regulator and higher arithmetic Chow groups, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On Goncharov's regulator and higher arithmetic Chow groups will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-664682

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.