Astronomy and Astrophysics – Astrophysics
Scientific paper
2006-10-12
Astronomy and Astrophysics
Astrophysics
to appear in "Black Holes: from Stars to Galaxies" Proceedings IAU Symp. No. 238, eds. V. Karas & G. Matt, 4 pages, 1 figure,
Scientific paper
I present results from numerical simulations of gas dynamics outside luminous accretion disks in active galactic nuclei. The gas, gravitationally captured by a super massive black hole, can be driven away by the energy and momentum of the radiation emitted during black hole accretion. Assuming axisymmetry, I study how the mass accretion and outflow rates, and the flow dynamics respond to changes in radiation heating relative to radiation pressure. I find that for a 10^8 MSUN black hole with the accretion luminosity of 0.6 of the Eddington luminosity the flow settles into a steady state and has two components: (1) an equatorial inflow and (2) a bipolar inflow/outflow with the outflow leaving the system along the disk rotational axis. The inflow is a realization of a Bondi-like accretion flow. The second component is an example of a non-radial accretion flow which becomes an outflow once it is pushed close to the rotational axis where thermal expansion and radiation pressure accelerate it outward. The main result of this preliminary work is that although the above two-component solution is robust, its properties are sensitive to the geometry and spectral energy distribution of the radiation field.
No associations
LandOfFree
Dynamics of radiatively inefficient flows accreting onto radiatively efficient black hole objects does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Dynamics of radiatively inefficient flows accreting onto radiatively efficient black hole objects, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamics of radiatively inefficient flows accreting onto radiatively efficient black hole objects will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-664048