Explicit Optimal Hardness via Gaussian stability results

Computer Science – Computational Complexity

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

The results of Raghavendra (2008) show that assuming Khot's Unique Games Conjecture (2002), for every constraint satisfaction problem there exists a generic semi-definite program that achieves the optimal approximation factor. This result is existential as it does not provide an explicit optimal rounding procedure nor does it allow to calculate exactly the Unique Games hardness of the problem. Obtaining an explicit optimal approximation scheme and the corresponding approximation factor is a difficult challenge for each specific approximation problem. An approach for determining the exact approximation factor and the corresponding optimal rounding was established in the analysis of MAX-CUT (KKMO 2004) and the use of the Invariance Principle (MOO 2005). However, this approach crucially relies on results explicitly proving optimal partitions in Gaussian space. Until recently, Borell's result (Borell 1985) was the only non-trivial Gaussian partition result known. In this paper we derive the first explicit optimal approximation algorithm and the corresponding approximation factor using a new result on Gaussian partitions due to Isaksson and Mossel (2012). This Gaussian result allows us to determine exactly the Unique Games Hardness of MAX-3-EQUAL. In particular, our results show that Zwick algorithm for this problem achieves the optimal approximation factor and prove that the approximation achieved by the algorithm is $\approx 0.796$ as conjectured by Zwick. We further use the previously known optimal Gaussian partitions results to obtain a new Unique Games Hardness factor for MAX-k-CSP : Using the well known fact that jointly normal pairwise independent random variables are fully independent, we show that the the UGC hardness of Max-k-CSP is $\frac{\lceil (k+1)/2 \rceil}{2^{k-1}}$, improving on results of Austrin and Mossel (2009).

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Explicit Optimal Hardness via Gaussian stability results does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Explicit Optimal Hardness via Gaussian stability results, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Explicit Optimal Hardness via Gaussian stability results will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-660927

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.