New Gauge Conditions in General Relativity: What Can We Learn from Them?

Astronomy and Astrophysics – Astrophysics – General Relativity and Quantum Cosmology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

6 pages, Revtex. Talk given at the Conference "Constrained Dynamics and Quantum Gravity, QG99", Villasimius (Sardinia, Italy),

Scientific paper

10.1016/S0920-5632(00)00803-3

The construction of conformally invariant gauge conditions for Maxwell and Einstein theories on a manifold M is found to involve two basic ingredients. First, covariant derivatives of a linear gauge (e.g. Lorenz or de Donder), completely contracted with the tensor field representing the metric on the vector bundle of the theory. Second, the addition of a compensating term, obtained by covariant differentiation of a suitable tensor field built from the geometric data of the problem. If the manifold M is endowed with an m-dimensional positive-definite metric g, the existence theorem for such a gauge in gravitational theory can be proved. If the metric g is Lorentzian, which corresponds to general relativity, some technical steps are harder, but one has again to solve integral equations on curved space-time to be able to impose such gauges.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

New Gauge Conditions in General Relativity: What Can We Learn from Them? does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with New Gauge Conditions in General Relativity: What Can We Learn from Them?, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and New Gauge Conditions in General Relativity: What Can We Learn from Them? will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-654278

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.