MHD Turbulence: Scaling Laws and Astrophysical Implications

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

review, 43 pages, 28 figures, submitted to "Simulations of magnetohydrodynamic turbulence in astrophysics" Eds. T. Passot & E.

Scientific paper

Turbulence is the most common state of astrophysical flows. In typical astrophysical fluids, turbulence is accompanied by strong magnetic fields, which has a large impact on the dynamics of the turbulent cascade. Recently, there has been a significant breakthrough on the theory of magnetohydrodynamic (MHD) turbulence. For the first time we have a scaling model that is supported by both observations and numerical simulations. We review recent progress in studies of both incompressible and compressible turbulence. We compare Iroshnikov-Kraichnan and Goldreich-Sridhar models, and discuss scalings of Alfv\'en, slow, and fast waves. We also discuss the completely new regime of MHD turbulence that happens below the scale at which hydrodynamic turbulent motions are damped by viscosity. In the case of the partially ionized diffuse interstellar gas the viscosity is due to neutrals and truncates the turbulent cascade at $\sim$parsec scales. We show that below this scale magnetic fluctuations with a shallow spectrum persist and discuss the possibility of a resumption of the MHD cascade after ions and neutrals decouple. We discuss the implications of this new insight into MHD turbulence for cosmic ray transport, grain dynamics, etc., and how to test theoretical predictions against observations.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

MHD Turbulence: Scaling Laws and Astrophysical Implications does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with MHD Turbulence: Scaling Laws and Astrophysical Implications, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and MHD Turbulence: Scaling Laws and Astrophysical Implications will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-652802

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.