Looking Deep Within an A-type Star: Core Convection Under the Influence of Rotation

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

6 pages, 4 figures (low resolution), Talk given at the IAU Symp. 215 on Stellar Rotation, held in Cancun, Nov 2002, to appear

Scientific paper

The advent of massively parallel supercomputing has begun to permit explicit 3--D simulations of turbulent convection occurring within the cores of early-type main sequence stars. Such studies should complement the stellar structure and evolution efforts that have so far largely employed 1--D nonlocal mixing length descriptions for the transport, mixing and overshooting achieved by core convection. We have turned to A-type stars as representative of many of the dynamical challenges raised by core convection within rotating stars. The differential rotation and meridional circulations achieved deep within the star by the convection, the likelihood of sustained magnetic dynamo action there, and the bringing of fresh fuel into the core by overshooting motions, thereby influencing main sequence lifetimes, all constitute interesting dynamical questions that require detailed modelling of global-scale convection. Using our anelastic spherical harmonic (ASH) code tested on the solar differential rotation problem, we have conducted a series of 3--D spherical domain simulations that deal with a simplified description of the central regions of rotating A-type stars, i.e a convectively unstable core is surrounded by a stable radiative envelope. A sequence of 3--D simulations are used to assess the properties of the convection (its global patterns, differential rotation, meridional circulations, extent and latitudinal variation of the overshooting) as transitions are made between laminar and turbulent states by changing the effective diffusivities, rotation rates, and subadiabaticity of the radiative exterior. We report on the properties deduced from these models for both the extent of penetration and the profile of rotation sustained by the convection.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Looking Deep Within an A-type Star: Core Convection Under the Influence of Rotation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Looking Deep Within an A-type Star: Core Convection Under the Influence of Rotation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Looking Deep Within an A-type Star: Core Convection Under the Influence of Rotation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-643400

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.