Astronomy and Astrophysics – Astrophysics – Earth and Planetary Astrophysics
Scientific paper
2010-09-21
Astronomy and Astrophysics
Astrophysics
Earth and Planetary Astrophysics
22 pages, 15 figures, 5 tables. Accepted for publication in MNRAS
Scientific paper
Most of the observed extrasolar planets are found on tight and often eccentric orbits. The high eccentricities are not easily explained by planet-formation models, which predict that planets should be on rather circular orbits. Here we explore whether fly-bys involving planetary systems with properties similar to those of the gas giants in the solar system, can produce planets with properties similar to the observed planets. Using numerical simulations, we show that fly-bys can cause the immediate ejection of planets, and sometimes also lead to the capture of one or more planets by the intruder. More common, however, is that fly-bys only perturb the orbits of planets, sometimes leaving the system in an unstable state. Over time-scales of a few million to several hundred million years after the fly-by, this perturbation can trigger planet-planet scatterings, leading to the ejection of one or more planets. For example, in the case of the four gas giants of the solar system, the fraction of systems from which at least one planet is ejected more than doubles in 10^8 years after the fly-by. The remaining planets are often left on more eccentric orbits, similar to the eccentricities of the observed extrasolar planets. We combine our results of how fly-bys effect solar-system-like planetary systems, with the rate at which encounters in young stellar clusters occur. For example, we measure the effects of fly-bys on the four gas giants in the solar system. We find, that for such systems, between 5 and 15 per cent suffer ejections of planets in 10^8 years after fly-bys in typical open clusters. Thus, encounters in young stellar clusters can significantly alter the properties of any planets orbiting stars in clusters. As a large fraction of stars which populate the solar neighbourhood form in stellar clusters, encounters can significantly affect the properties of the observed extrasolar planets.
Davies Melvyn B.
Heggie Douglas C.
Malmberg Daniel
No associations
LandOfFree
The effects of fly-bys on planetary systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The effects of fly-bys on planetary systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The effects of fly-bys on planetary systems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-636983