Chern classes of blow-ups

Mathematics – Algebraic Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

17 pages

Scientific paper

10.1017/S0305004109990247

We extend the classical formula of Porteous for blowing-up Chern classes to the case of blow-ups of possibly singular varieties along regularly embedded centers. The proof of this generalization is perhaps conceptually simpler than the standard argument for the nonsingular case, involving Riemann-Roch without denominators. The new approach relies on the explicit computation of an ideal, and a mild generalization of the well-known formula for the normal bundle of a proper transform. We also discuss alternative, very short proofs of the standard formula in some cases: an approach relying on the theory of Chern-Schwartz-MacPherson classes (working in characteristic 0), and an argument reducing the formula to a straightforward computation of Chern classes for sheaves of differential 1-forms with logarithmic poles (when the center of the blow-up is a complete intersection).

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Chern classes of blow-ups does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Chern classes of blow-ups, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chern classes of blow-ups will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-634226

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.