Row Sampling for Matrix Algorithms via a Non-Commutative Bernstein Bound

Computer Science – Data Structures and Algorithms

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Working Paper

Scientific paper

We focus the use of \emph{row sampling} for approximating matrix algorithms. We give applications to matrix multipication; sparse matrix reconstruction; and, \math{\ell_2} regression. For a matrix \math{\matA\in\R^{m\times d}} which represents \math{m} points in \math{d\ll m} dimensions, all of these tasks can be achieved in \math{O(md^2)} via the singular value decomposition (SVD). For appropriate row-sampling probabilities (which typically depend on the norms of the rows of the \math{m\times d} left singular matrix of \math{\matA} (the \emph{leverage scores}), we give row-sampling algorithms with linear (up to polylog factors) dependence on the stable rank of \math{\matA}. This result is achieved through the application of non-commutative Bernstein bounds. We then give, to our knowledge, the first algorithms for computing approximations to the appropriate row-sampling probabilities without going through the SVD of \math{\matA}. Thus, these are the first \math{o(md^2)} algorithms for row-sampling based approximations to the matrix algorithms which use leverage scores as the sampling probabilities. The techniques we use to approximate sampling according to the leverage scores uses some powerful recent results in the theory of random projections for embedding, and may be of some independent interest. We confess that one may perform all these matrix tasks more efficiently using these same random projection methods, however the resulting algorithms are in terms of a small number of linear combinations of all the rows. In many applications, the actual rows of \math{\matA} have some physical meaning and so methods based on a small number of the actual rows are of interest.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Row Sampling for Matrix Algorithms via a Non-Commutative Bernstein Bound does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Row Sampling for Matrix Algorithms via a Non-Commutative Bernstein Bound, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Row Sampling for Matrix Algorithms via a Non-Commutative Bernstein Bound will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-615263

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.