Mathematics – Combinatorics
Scientific paper
2002-02-10
Proc. Amer. Math. Soc., 131 (2003), 3319-3328.
Mathematics
Combinatorics
10 pages, 7 figures
Scientific paper
We define skew Schubert polynomials to be normal form (polynomial) representatives of certain classes in the cohomology of a flag manifold. We show that this definition extends a recent construction of Schubert polynomials due to Bergeron and Sottile in terms of certain increasing labeled chains in Bruhat order of the symmetric group. These skew Schubert polynomials expand in the basis of Schubert polynomials with nonnegative integer coefficients that are precisely the structure constants of the cohomology of the complex flag variety with respect to its basis of Schubert classes. We rederive the construction of Bergeron and Sottile in a purely combinatorial way, relating it to the construction of Schubert polynomials in terms of rc-graphs.
Lenart Cristian
Sottile Frank
No associations
LandOfFree
Skew Schubert polynomials does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Skew Schubert polynomials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Skew Schubert polynomials will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-593550