Astronomy and Astrophysics – Astrophysics
Scientific paper
2006-10-03
Astrophys.J.614:1073,2004
Astronomy and Astrophysics
Astrophysics
55 pages (ApJ refereeing format), 15 figures (low res), published by ApJ on October 2004 (abstract slightly reduced in order t
Scientific paper
10.1086/423835
The operation of the solar global dynamo appears to involve many dynamical elements. Self-consistent MHD simulations which realistically incorporate all of these processes are not yet computationally feasible, though some elements can now be studied with reasonable fidelity. Here we consider the manner in which turbulent compressible convection within the bulk of the solar convection zone can generate large-scale magnetic fields through dynamo action. We accomplish this through a series of three-dimensional numerical simulations of MHD convection within rotating spherical shells using our ASH code on massively parallel supercomputers. Since differential rotation is a key ingredient in all dynamo models, we also examine here the nature of the rotation profiles that can be sustained within the deep convection zone as strong magnetic fields are built and maintained. We find that the convection is able to maintain a solar-like angular velocity profile despite the influence of Maxwell stresses which tend to oppose Reynolds stresses and thus reduce the latitudinal angular velocity contrast throughout the convection zone. The dynamo-generated magnetic fields exhibit a complex structure and evolution, with radial fields concentrated in downflow lanes and toroidal fields organized into twisted ribbons which are extended in longitude and which achieve field strengths of up to 5000 G. The flows and fields exhibit substantial kinetic and magnetic helicity although systematic hemispherical patterns are only apparent in the former. Fluctuating fields dominate the magnetic energy and account for most of the back-reaction on the flow via Lorentz forces. Mean fields are relatively weak and do not exhibit systematic latitudinal propagation or periodic polarity reversals as in the sun. This may be attributed to the absence of a tachocline.
Brun Allan Sacha
Miesch Mark S.
Toomre Juri
No associations
LandOfFree
Global-Scale Turbulent Convection and Magnetic Dynamo Action in the Solar Envelope does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Global-Scale Turbulent Convection and Magnetic Dynamo Action in the Solar Envelope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Global-Scale Turbulent Convection and Magnetic Dynamo Action in the Solar Envelope will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-588646