Hydromagnetic Stability of a Slim Disk in a Stationary Geometry

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

submitted to M.N.R.A.S. (3/29/02), 14 pages, 2 figures v2 accepted paper: clarified text and added discussion on radial flow e

Scientific paper

10.1046/j.1365-8711.2002.05826.x

The magnetorotational instability originates from the elastic coupling of fluid elements in orbit around a gravitational well. Since inertial accelerations play a fundamental dynamical role in the process, one may expect substantial modifications by strong gravity in the case of accretion on to a black hole. In this paper, we develop a fully covariant, Lagrangian displacement vector field formalism with the aim of addressing these issues for a disk embedded in a stationary geometry with negligible radial flow. This construction enables a transparent connection between particle dynamics and the ensuing dispersion relation for MHD wave modes. The MRI--in its incompressible variant-- is found to operate virtually unabated down to the marginally stable orbit; the putative inner boundary of standard accretion disk theory. To get a qualitative feel for the dynamical evolution of the flow below $r_{\rm ms}$, we assume a mildly advective accretion flow such that the angular velocity profile departs slowly from circular geodesic flow. This exercise suggests that the turbulent eddies will occur at spatial scales approaching the radial distance while tracking the surfaces of null angular velocity gradients. The implied field topology, namely large-scale horizontal field domains, should yield strong mass segregation at the displacement nodes of the non-linear modes when radiation stress dominates the local disk structure (an expectation supported by quasi-linear arguments and by the non-linear behavior of the MRI in a non-relativistic setting). Under this circumstance, baryon-poor flux in horizontal field domains will be subject to radial buoyancy and to the Parker instability, thereby promoting the growth of poloidal field.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Hydromagnetic Stability of a Slim Disk in a Stationary Geometry does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Hydromagnetic Stability of a Slim Disk in a Stationary Geometry, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydromagnetic Stability of a Slim Disk in a Stationary Geometry will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-584699

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.