Global modeling of radiatively driven accretion of metals from compact debris disks onto the white dwarfs

Astronomy and Astrophysics – Astrophysics – Earth and Planetary Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

9 pages, 8 figures, submitted to ApJ

Scientific paper

Recent infrared observations have revealed presence of compact (radii < R_Sun) debris disks around more than a dozen of metal-rich white dwarfs (WD), likely produced by tidal disruption of asteroids. Accretion of high-Z material from these disks may account for the metal contamination of these WDs. It was previously shown using local calculations that the Poynting-Robertson (PR) drag acting on the dense, optically thick disk naturally drives metal accretion onto the WD at the typical rate \dot M_{PR} \approx 10^8 g/s. Here we extend this local analysis by exploring global evolution of the debris disk under the action of the PR drag for a variety of assumptions about the disk properties. We find that massive disks (mass > 10^{20} g), which are optically thick to incident stellar radiation inevitably give rise to metal accretion at rates \dot M > 0.2\dot M_{PR}. The magnitude of \dot M and its time evolution are determined predominantly by the initial pattern of the radial distribution of the debris (i.e. ring-like vs. disk-like) but not by the total mass of the disk. The latter determines only the disk lifetime, which can be several Myr or longer. Evolution of an optically thick disk generically results in the development of a sharp outer edge of the disk. We also find that the low mass (< 10^{20} g), optically thin disks exhibit \dot M << \dot M_{PR} and evolve on characteristic timescale \sim 10^5-10^6 yr, independent of their total mass.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Global modeling of radiatively driven accretion of metals from compact debris disks onto the white dwarfs does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Global modeling of radiatively driven accretion of metals from compact debris disks onto the white dwarfs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Global modeling of radiatively driven accretion of metals from compact debris disks onto the white dwarfs will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-578337

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.