Shock formation in stellar perturbations and tidal shock waves in binaries

Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Preprint revised to reflect an erratum published in MNRAS. The error does not propagate outside Sec. 3.1, and does not affect

Scientific paper

We investigate whether tidal forcing can result in sound waves steepening into shocks at the surface of a star. To model the sound waves and shocks, we consider adiabatic non-spherical perturbations of a Newtonian perfect fluid star. Because tidal forcing of sounds waves is naturally treated with linear theory, but the formation of shocks is necessarily nonlinear, we consider the perturbations in two regimes. In most of the interior, where tidal forcing dominates, we treat the perturbations as linear, while in a thin layer near the surface we treat them in full nonlinearity but in the approximation of plane symmetry, fixed gravitational field and a barotropic equation of state. Using a hodograph transformation, this nonlinear regime is also described by a linear equation. We show that the two regimes can be matched to give rise to a single mode equation which is linear but models nonlinearity in the outer layers. This can then be used to obtain an estimate for the critical mode amplitude at which a shock forms near the surface. As an application, we consider the tidal waves raised by the companion in an irrotational binary system in circular orbit. We find that shocks form at the same orbital separation where Roche lobe overflow occurs, and so shock formation is unlikely to occur.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Shock formation in stellar perturbations and tidal shock waves in binaries does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Shock formation in stellar perturbations and tidal shock waves in binaries, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Shock formation in stellar perturbations and tidal shock waves in binaries will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-571054

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.