The Physics of the Neutrino Mechanism of Core-Collapse Supernovae

Astronomy and Astrophysics – Astrophysics – High Energy Astrophysical Phenomena

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

27 pages, 20 figures, accepted to ApJ

Scientific paper

10.1088/0004-637X/746/1/106

(Abridged) Neutrino heating may drive core-collapse supernova explosions. Although it is known that the stalled accretion shock turns into explosion when the neutrino luminosity from the collapsed core exceeds a critical value (L_crit) (the "neutrino mechanism"), the physics of L_crit, as well as its dependence on the properties of the proto-neutron star (PNS) and changes to the microphysics has never been systematically explored. We solve the one-dimensional steady-state accretion problem between the PNS surface and the accretion shock. We quantify the deep connection between the solution space of steady-state accretion flows with bounding shocks and the neutrino mechanism. We show that there is a maximum, critical sound speed above which it is impossible to maintain accretion with a standoff shock, because the shock jump conditions cannot be satisfied. The physics of this critical sound speed is general and does not depend on a specific heating mechanism. For the simple model of pressure-less free-fall onto a shock bounding an isothermal accretion flow with sound speed c_T, we show that if c_T^2/v_escape^2 > 3/16 explosion results. We generalize this result to the more complete supernova problem, showing explicitly that the same physics determines L_crit. We find that the critical condition for explosion can be written as c_S^2/v_escape^2 = 0.19, where c_S is the adiabatic sound speed. This "antesonic" condition describes L_crit over a broad range in accretion rate and microphysics. We show that the addition of the accretion luminosity (L_acc) reduces L_crit non-trivially. As in previous work, we find that L_crit is always significantly higher than the maximum possible value of L_acc. Finally, we provide evidence that the reduction in L_crit seen in recent multi-dimensional simulations results from a reduction in the efficiency of cooling, rather than an increase in the heating rate.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Physics of the Neutrino Mechanism of Core-Collapse Supernovae does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Physics of the Neutrino Mechanism of Core-Collapse Supernovae, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Physics of the Neutrino Mechanism of Core-Collapse Supernovae will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-569774

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.