Runaway accretion of metals from compact debris disks onto white dwarfs

Astronomy and Astrophysics – Astrophysics – Earth and Planetary Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

5 pages, 2 figures, submitted to ApJL

Scientific paper

It was recently proposed that metal-rich white dwarfs (WDs) accrete their metals from compact debris disks found to exist around more than a dozen of them. At the same time, elemental abundances measured in atmospheres of some WDs imply vigorous metal accretion at rates up to $10^{11}$ g/s, far in excess of what can be supplied solely by Poynting-Robertson drag acting on such debris disks. To explain this observation we propose a model, in which rapid transport of metals from the disk onto the WD naturally results from interaction between this particulate disk and spatially coexisting disk of metallic gas. The latter is fed by evaporation of debris particles at the sublimation radius located at several tens of WD radii. Because of pressure support gaseous disk orbits WD slower than particulate disk. Resultant azimuthal drift between them at speed ~1 m/s causes aerodynamic drag on the disk of solids and drives inward migration of its constituent particles. Upon reaching the sublimation radius particles evaporate, enhancing the density of metallic gaseous disk and leading to positive feedback. Under favorable circumstances (low viscosity in the disk of metallic gas and efficient aerodynamic coupling between the disks) system evolves in a runaway fashion, destroying debris disk on time scale of $\sim 10^5$ yr, and giving rise to high metal accretion rates up to $10^{10}-10^{11}$ g/s, in agreement with observations.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Runaway accretion of metals from compact debris disks onto white dwarfs does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Runaway accretion of metals from compact debris disks onto white dwarfs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Runaway accretion of metals from compact debris disks onto white dwarfs will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-557570

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.