Astronomy and Astrophysics – Astrophysics – General Relativity and Quantum Cosmology
Scientific paper
2012-01-02
Astronomy and Astrophysics
Astrophysics
General Relativity and Quantum Cosmology
47 pages, Latex, 2 figures
Scientific paper
We establish a new criterion for the dynamical stability of black holes in $D \geq 4$ spacetime dimensions in general relativity with respect to axisymmetric perturbations: Dynamical stability is equivalent to the positivity of the canonical energy, $\E$, on a subspace, $\mathcal T$, of linearized solutions that have vanishing linearized ADM mass, momentum, and angular momentum at infinity and satisfy certain gauge conditions at the horizon. This is shown by proving that---apart from pure gauge perturbations and perturbations towards other stationary black holes---$\E$ is nondegenerate on $\mathcal T$ and that, for axisymmetric perturbations, $\E$ has positive flux properties at both infinity and the horizon. We further show that $\E$ is related to the second order variations of mass, angular momentum, and horizon area by $\E = \delta^2 M - \sum_A \Omega_A \delta^2 J_A - \frac{\kappa}{8\pi} \delta^2 A$, thereby establishing a close connection between dynamical stability and thermodynamic stability. Thermodynamic instability of a family of black holes need not imply dynamical instability because the perturbations towards other members of the family will not, in general, have vanishing linearized ADM mass and/or angular momentum. However, we prove that for any black brane corresponding to a thermodynamically unstable black hole, sufficiently long wavelength perturbations can be found with $\E < 0$ and vanishing linearized ADM quantities. Thus, all black branes corresponding to thermodynmically unstable black holes are dynamically unstable, as conjectured by Gubser and Mitra. We also prove that positivity of $\E$ on $\mathcal T$ is equivalent to the satisfaction of a "local Penrose inequality," thus showing that satisfaction of this local Penrose inequality is necessary and sufficient for dynamical stability.
Hollands Stefan
Wald Robert M.
No associations
LandOfFree
Stability of Black Holes and Black Branes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Stability of Black Holes and Black Branes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stability of Black Holes and Black Branes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-55507