General Relativistic Magnetohydrodynamic Simulations of Jet Formation with a Thin Keplerian Disk

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

12 pages, 3 figures, revised version based on referee's comments

Scientific paper

We have performed several simulations of black hole systems (non-rotating, black hole spin parameter a=0.0 and rapidly rotating, a=0.95) with a geometrically thin Keplerian disk using the newly developed RAISHIN code. The simulation results show the formation of jets driven by the Lorentz force and the gas pressure gradient. The jets have mildly relativistic speed (\sim 0.4c). The matter is continuously supplied from the accretion disk and the jet propagates outward until each applicable terminal simulation time (non-rotating: t/\tau_S = 275 and rotating: t/tau_S = 200, \tau_S \equiv r_S/c). It appears that a rotating black hole creates an additional, faster, and more collimated matter-dominated inner outflow (\sim 0.5c) formed and accelerated by the twisted magnetic field resulting from frame-dragging in the black hole ergosphere. This is the first known simulation confirming the formation of an inner magnetically-driven, matter-dominated jet by the frame-dragging effect from a black hole co-rotating with a thin Keplerian disk threaded by a vertical magnetic field. This result indicates that jet kinematic structure depends on black hole rotation and on the initial magnetic field configuration and strength.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

General Relativistic Magnetohydrodynamic Simulations of Jet Formation with a Thin Keplerian Disk does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with General Relativistic Magnetohydrodynamic Simulations of Jet Formation with a Thin Keplerian Disk, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and General Relativistic Magnetohydrodynamic Simulations of Jet Formation with a Thin Keplerian Disk will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-554082

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.