Mathematics – Quantum Algebra
Scientific paper
2006-01-23
Mathematics
Quantum Algebra
13 pages
Scientific paper
The following integrability theorem for vertex operator algebras V satisfying some finiteness conditions(C_2-cofinite and CFT-type) is proved: the vertex operator subalgebra generated by a simple Lie subalgebra {\frak g} of the weight one subspace V_1 is isomorphic to the irreducible highest weight \hat{\frak g}-module L(k, 0) for a positive integer k, and V is an integrable \hat{\frak g}-module. The case in which {\frak g} is replaced by an abelian Lie subalgebra is also considered, and several consequences of integrability are discussed.
Dong Chongying
Mason Geoffrey
No associations
LandOfFree
Integrability of C_2-cofinite vertex operator algebras does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Integrability of C_2-cofinite vertex operator algebras, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrability of C_2-cofinite vertex operator algebras will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-550924