Relations de dépendance et intersections exceptionnelles (Dependence relations and exceptional intersections)

Mathematics – Number Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

S\'eminaire Bourbaki, 63e ann\'ee, 2010-11, Expos\'e n{\deg} 1032. In French

Scientific paper

This text is devoted to the following result, stemming out works of Bombieri, Masser, Zannier, and Maurin: Let $X$ be an complex algebraic (projective, connected) curve and let us consider $n$ rational functions $f_1,...,f_n$ on $X$ which are multiplicatively independent. The points $x$ of $X$ where their values $f_1(x),...,f_n(x)$ satisfy at least two independent multiplicative dependence relations form a finite set. We discuss the conjectural generalizations of this theorem (Bombieri, Masser, Zannier; Zilber; Pink) concerning the finiteness of points of a $d$-dimensional subvariety $X$ of a semiabelian variety $G$ which belong to an algebraic subgroup of codimension $>d$ of $G$, their relations with theorems of Mordell-Lang or Manin-Mumford type, and, in the arithmetic case, recent results in this direction (Habegger; R\'emond; Viada). ----- Ce texte est consacr\'e au r\'esultat suivant, issus des travaux de Bombieri, Masser, Zannier et Maurin: Soit $X$ une courbe alg\'ebrique (projective, connexe) complexe et consid\'erons $n$ fonctions rationnelles $f_1,...,f_n$ multiplicativement ind\'ependantes sur $X$. Les points $x$ de $X$ o\`u leurs valeurs $f_1(x),...,f_n(x)$ v\'erifient au moins deux relations de d\'ependance multiplicative ind\'ependantes forment un ensemble fini. Nous discutons les g\'en\'eralisations conjecturales de ce th\'eor\`eme (Bombieri, Masser, Zannier; Zilber; Pink) concernant la finitude des points d'une sous-vari\'et\'e $X$ de dimension $d$ d'une vari\'et\'e semi-ab\'elienne $G$ qui appartiennent \`a un sous-groupe alg\'ebrique de codimension $>d$ dans $G$, leurs relations avec les th\'eor\`emes de type Mordell-Lang ou Manin-Mumford et, dans le cas arithm\'etique, les r\'esultats r\'ecents dans cette direction (Habegger; R\'emond; Viada).

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Relations de dépendance et intersections exceptionnelles (Dependence relations and exceptional intersections) does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Relations de dépendance et intersections exceptionnelles (Dependence relations and exceptional intersections), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Relations de dépendance et intersections exceptionnelles (Dependence relations and exceptional intersections) will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-542235

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.