Toroidal versus poloidal magnetic fields in Sun-like stars: a rotation threshold

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

MNRAS (in press)

Scientific paper

10.1111/j.1365-2966.2008.13411.x

From a set of stellar spectropolarimetric observations, we report the detection of surface magnetic fields in a sample of four solar-type stars, namely HD 73350, HD 76151, HD 146233 (18 Sco) and HD 190771. Assuming that the observed variability of polarimetric signal is controlled by stellar rotation, we establish the rotation periods of our targets, with values ranging from 8.8 d (for HD 190771) to 22.7 d (for HD 146233). Apart from rotation, fundamental parameters of the selected objects are very close to the Sun's, making this sample a practical basis to investigate the specific impact of rotation on magnetic properties of Sun-like stars. We reconstruct the large-scale magnetic geometry of the targets as a low-order (l<10) spherical harmonics expansion of the surface magnetic field. From the set of magnetic maps, we draw two main conclusions. (a) The magnetic energy of the large-scale field increases with rotation rate. The increase of chromospheric emission with the mean magnetic field is flatter than observed in the Sun. Since the chromospheric flux is also sensitive to magnetic elements smaller than those contributing to the polarimetric signal, this observation suggests that a larger fraction of the surface magnetic energy is stored in large scales as rotation increases. (b) Whereas the magnetic field is mostly poloidal for low rotation rates, more rapid rotators host a large-scale toroidal component in their surface field. From our observations, we infer that a rotation period lower than ~12 days is necessary for the toroidal magnetic energy to dominate over the poloidal component.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Toroidal versus poloidal magnetic fields in Sun-like stars: a rotation threshold does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Toroidal versus poloidal magnetic fields in Sun-like stars: a rotation threshold, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Toroidal versus poloidal magnetic fields in Sun-like stars: a rotation threshold will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-540773

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.