Updated constraints on the cosmic string tension

Astronomy and Astrophysics – Astrophysics – Cosmology and Extragalactic Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

12 pages, 6 figures, original submission was not final version and contained some minor errors which was submitted by accident

Scientific paper

We re-examine the constraints on the cosmic string tension from Cosmic Microwave Background (CMB) and matter power spectra, and also from limits on a stochastic background of gravitational waves provided by pulsar timing. We discuss the different approaches to modeling string evolution and radiation. In particular, we show that the unconnected segment model can describe CMB spectra expected from thin string (Nambu) and field theory (Abelian-Higgs) simulations using the computed values for the correlation length, rms string velocity and small-scale structure relevant to each variety of simulation. Applying the computed spectra in a fit to CMB and SDSS data we find that $G\mu/c^2< 2.6\times 10^{-7}$ ($2 \sigma$) if the Nambu simulations are correct and $G\mu /c^2< 6.4\times 10^{-7}$ in the Abelian-Higgs case. The degeneracy between $G\mu/c^2$ and the power spectrum slope $n_{\rm S}$ is substantially reduced from previous work. Inclusion of constraints on the baryon density from Big Bang Nucleosynthesis (BBN) imply that $n_{\rm S} <1$ at around the $4\sigma$ level for both the Nambu and Abelian-Higgs cases. As a by-product of our results, we find there is "moderate-to-strong" Bayesian evidence that the Harrison-Zel'dovich spectrum is excluded (odds ratio of $\sim 100:1$) by the combination of CMB, SDSS and BBN when compared to the standard 6 parameter fit. Using the contribution to the gravitational wave background from radiation era loops as a conservative lower bound on the signal for specific values of $G\mu/c^2$ and loop production size, $\alpha$, we find that $G\mu /c^2< 7\times 10^{-7} $ for $\alpha c^2/(\Gamma G\mu)\ll1$ and $G\mu/c^2 < 5\times 10^{-11}/\alpha$ for $\alpha c^2/(\Gamma G\mu) \gg1$.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Updated constraints on the cosmic string tension does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Updated constraints on the cosmic string tension, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Updated constraints on the cosmic string tension will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-531903

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.