Mathematics – Algebraic Geometry
Scientific paper
2009-12-03
Mathematics
Algebraic Geometry
Correction of previous versions after the detection of errors by Professor Michael Thaddeus
Scientific paper
This paper proposes some material towards a theory of general toric varieties without the assumption of normality. Their combinatorial description involves a fan to which is attached a set of semigroups subjected to gluing-up conditions. In particular it contains a combinatorial construction of the blowing up of a sheaf of monomial ideals on a toric variety. In the second part it is shown that over an algebraically closed base field of zero characteristic the Semple-Nash modification of a general toric variety is isomorphic to the blowing up of the sheaf of logarithmic jacobian ideals and that in any characteristic this blowing-up is an isomorphism if and only if the toric variety is non singular.
Gonzalez Perez Pedro Daniel
Teissier Bernard
No associations
LandOfFree
Toric Geometry and the Semple-Nash modification does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Toric Geometry and the Semple-Nash modification, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Toric Geometry and the Semple-Nash modification will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-517056