Astronomy and Astrophysics – Astrophysics
Scientific paper
2005-01-18
ApJ, 632, 872, 2005
Astronomy and Astrophysics
Astrophysics
10 pages, 3 figures, version accepted by ApJ
Scientific paper
10.1086/452619
(Abridged) The hierarchical formation scenario for the stellar halo requires the accretion and disruption of dwarf galaxies, yet low-metallicity halo stars are enriched in alpha-elements compared to similar, low-metallicity stars in dwarf spheroidal (dSph) galaxies. We address this primary challenge for the hierarchical formation scenario for the stellar halo by combining chemical evolution modelling with cosmologically-motivated mass accretion histories for the Milky Way dark halo and its satellites. We demonstrate that stellar halo and dwarf galaxy abundance patterns can be explained naturally within the LCDM framework. Our solution relies fundamentally on the LCDM model prediction that the majority of the stars in the stellar halo were formed within a few relatively massive, ~5 x 10^10 Msun, dwarf irregular (dIrr)-size dark matter halos, which were accreted and destroyed ~10 Gyr in the past. These systems necessarily have short-lived, rapid star formation histories, are enriched primarily by Type II supernovae, and host stars with enhanced [a/Fe] abundances. In contrast, dwarf spheroidal galaxies exist within low-mass dark matter hosts of ~10^9 Msun, where supernovae winds are important in setting the intermediate [a/Fe] ratios observed. Our model includes enrichment from Type Ia and Type II supernovae as well as stellar winds, and includes a physically-motivated supernovae feedback prescription calibrated to reproduce the local dwarf galaxy stellar mass - metallicity relation. We use representative examples of the type of dark matter halos we expect to host a destroyed ``stellar halo progenitor'' dwarf, a surviving dIrr, and a surviving dSph galaxy, and show that their derived abundance patterns, stellar masses, and gas masses are consistent with those observed for each type of system.
Bullock James S.
Font Andreea S.
Hernquist Lars
Johnston Kathryn V.
Robertson Brant
No associations
LandOfFree
Lambda-Cold Dark Matter, Stellar Feedback, and the Galactic Halo Abundance Pattern does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Lambda-Cold Dark Matter, Stellar Feedback, and the Galactic Halo Abundance Pattern, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lambda-Cold Dark Matter, Stellar Feedback, and the Galactic Halo Abundance Pattern will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-510909