Astronomy and Astrophysics – Astrophysics
Scientific paper
2005-10-10
Astronomy and Astrophysics
Astrophysics
Astrobiology, in press
Scientific paper
10.1089/ast.2006.06-0126
The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps a hundred 1000-km "planetary embryos" and a swarm of billions of 1-10 km "planetesimals." During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about ten times more particles than in previous simulations (Raymond et al 2006a, Icarus, 183, 265-282). These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from past 2.5 AU; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets -- such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a "hit or miss" way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects such as planetary mass and location, and giant planet properties.
Lunine Jonathan I.
Quinn Thomas
Raymond Sean N.
No associations
LandOfFree
High-resolution simulations of the final assembly of Earth-like planets 2: water delivery and planetary habitability does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with High-resolution simulations of the final assembly of Earth-like planets 2: water delivery and planetary habitability, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High-resolution simulations of the final assembly of Earth-like planets 2: water delivery and planetary habitability will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-505335