The Physics of the 'Heartbeat' State of GRS 1915+105

Astronomy and Astrophysics – Astrophysics – High Energy Astrophysical Phenomena

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Accepted to ApJ. 22 pages, 14 figures, uses emulateapj

Scientific paper

We present the first detailed phase-resolved spectral analysis of a joint Chandra High Energy Transmission Grating Spectrometer and Rossi X-ray Timing Explorer observation of the rho variability class in the microquasar GRS 1915+105. The rho cycle displays a high-amplitude, double-peaked flare that recurs roughly every 50 s, and is sometimes referred to as the "heartbeat" oscillation. The spectral and timing properties of the oscillation are consistent with the radiation pressure instability and the evolution of a local Eddington limit in the inner disk. We exploit strong variations in the X-ray continuum, iron emission lines, and the accretion disk wind to probe the accretion geometry over nearly six orders of magnitude in distance from the black hole. At small scales (1-10 R_g), we detect a burst of bremsstrahlung emission that appears to occur when a portion of the inner accretion disk evaporates due to radiation pressure. Jet activity, as inferred from the appearance of a short X-ray hard state, seems to be limited to times near minimum luminosity, with a duty cycle of ~10%. On larger scales (1e5-1e6 R_g) we use detailed photoionization arguments to track the relationship between the fast X-ray variability and the accretion disk wind. For the first time, we are able to show that changes in the broadband X-ray spectrum produce changes in the structure and density of the accretion disk wind on timescales as short as 5 seconds. These results clearly establish a causal link between the X-ray oscillations and the disk wind and therefore support the existence of a disk-jet-wind connection. Furthermore, our analysis shows that the mass loss rate in the wind may be sufficient to cause long-term oscillations in the accretion rate, leading to state transitions in GRS 1915+105.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Physics of the 'Heartbeat' State of GRS 1915+105 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Physics of the 'Heartbeat' State of GRS 1915+105, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Physics of the 'Heartbeat' State of GRS 1915+105 will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-493971

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.