Astronomy and Astrophysics – Astrophysics
Scientific paper
1999-02-09
Astronomy and Astrophysics
Astrophysics
19 pages including 12 figures; Accepted for publication in ApJ
Scientific paper
10.1086/307394
A star can be tidally disrupted around a massive black hole. It has been known that the debris forms a precessing stream, which may collide with itself. The stream collision is a key process determining the subsequent evolution of the stellar debris: if the orbital energy is efficiently dissipated, the debris will eventually form a circular disk (or torus). In this paper, we have numerically studied such stream collision resulting from the encounter between a 10^6 Msun black hole and a 1 Msun normal star with a pericenter radius of 100 Rsun. A simple treatment for radiative cooling has been adopted for both optically thick and thin regions. We have found that approximately 10 to 15% of the initial kinetic energy of the streams is converted into thermal energy during the collision. The angular momentum of the incoming stream is increased by a factor of 2 to 3, and such increase, together with the decrease in kinetic energy, significantly helps the circularization process. Initial luminosity burst due to the collision may reach as high as 10^41 erg/sec in 10^4 sec, after which the luminosity increases again (but slowly this time) to a steady value of a few 10^40 erg/sec in a few times of 10^5 sec. The radiation from the system is expected to be close to Planckian with effective temperature of \~10^5K.
Kim Sungsoo S.
Lee Hyung Mok
Park Myeong-Gu
No associations
LandOfFree
The Stream-Stream Collision after the Tidal Disruption of a Star Around a Massive Black Hole does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Stream-Stream Collision after the Tidal Disruption of a Star Around a Massive Black Hole, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Stream-Stream Collision after the Tidal Disruption of a Star Around a Massive Black Hole will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-490338