Mathematics – Rings and Algebras
Scientific paper
2005-10-20
J. Aust. Math. Soc. 79 (2005), no. 3, 399-440
Mathematics
Rings and Algebras
36 pages, to be published in J. Austral. Math. Soc. Ser. A
Scientific paper
A thin Lie algebra is a Lie algebra graded over the positive integers satisfying a certain narrowness condition. We describe several cyclic grading of the modular Hamiltonian Lie algebras $H(2\colon\n;\omega_2)$ (of dimension one less than a power of $p$) from which we construct infinite-dimensional thin Lie algebras. In the process we provide an explicit identification of $H(2\colon\n;\omega_2)$ with a Block algebra. We also compute its second cohomology group and its derivation algebra (in arbitrary prime characteristic).
Caranti Andrea
Mattarei Sandro
No associations
LandOfFree
Gradings of non-graded Hamiltonian Lie algebras does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Gradings of non-graded Hamiltonian Lie algebras, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gradings of non-graded Hamiltonian Lie algebras will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-476009