Nonlinear Sciences – Exactly Solvable and Integrable Systems
Scientific paper
2007-01-30
Phys. Lett. A., vol 372, no 33, 5431--5435, (2008)
Nonlinear Sciences
Exactly Solvable and Integrable Systems
submitted to Journal of Geometry and Physics
Scientific paper
10.1016/j.physleta.2008.06.050
We show that if a holomorphic Hamiltonian system is holomorphically integrable in the non-commutative sense in a neighbourhood of a non-equilibrium phase curve which is located at a regular level of the first integrals, then the identity component of the differential Galois group of the variational equations along the phase curve is Abelian. Thus necessary conditions for the commutative and non-commutative integrability given by the differential Galois approach are the same.
Przybylska Maria
~Maciejewski Andrzej J.
No associations
LandOfFree
Differential Galois obstructions for non-commutative integrability does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Differential Galois obstructions for non-commutative integrability, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Differential Galois obstructions for non-commutative integrability will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-470655