Mathematics – Group Theory
Scientific paper
2000-12-02
Algebraic and Geometric Topology 1 (2001) 57-71
Mathematics
Group Theory
Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol1/agt-1-4.abs.html
Scientific paper
We prove a version of the countable union theorem for asymptotic dimension and we apply it to groups acting on asymptotically finite dimensional metric spaces. As a consequence we obtain the following finite dimensionality theorems. A) An amalgamated product of asymptotically finite dimensional groups has finite asymptotic dimension: asdim A *_C B < infinity. B) Suppose that G' is an HNN extension of a group G with asdim G < infinity. Then asdim G'< infinity. C) Suppose that \Gamma is Davis' group constructed from a group \pi with asdim\pi < infinity. Then asdim\Gamma < infinity.
Bell Guido
Dranishnikov Alexander
No associations
LandOfFree
On asymptotic dimension of groups does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On asymptotic dimension of groups, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On asymptotic dimension of groups will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-464028