Numerical Relativity Using a Generalized Harmonic Decomposition

Astronomy and Astrophysics – Astrophysics – General Relativity and Quantum Cosmology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

18 pages, 6 figures; updated to coincide with journal version, which includes some expanded discussions and a new appendix wit

Scientific paper

10.1088/0264-9381/22/2/014

A new numerical scheme to solve the Einstein field equations based upon the generalized harmonic decomposition of the Ricci tensor is introduced. The source functions driving the wave equations that define generalized harmonic coordinates are treated as independent functions, and encode the coordinate freedom of solutions. Techniques are discussed to impose particular gauge conditions through a specification of the source functions. A 3D, free evolution, finite difference code implementing this system of equations with a scalar field matter source is described. The second-order-in-space-and-time partial differential equations are discretized directly without the use first order auxiliary terms, limiting the number of independent functions to fifteen--ten metric quantities, four source functions and the scalar field. This also limits the number of constraint equations, which can only be enforced to within truncation error in a numerical free evolution, to four. The coordinate system is compactified to spatial infinity in order to impose physically motivated, constraint-preserving outer boundary conditions. A variant of the Cartoon method for efficiently simulating axisymmetric spacetimes with a Cartesian code is described that does not use interpolation, and is easier to incorporate into existing adaptive mesh refinement packages. Preliminary test simulations of vacuum black hole evolution and black hole formation via scalar field collapse are described, suggesting that this method may be useful for studying many spacetimes of interest.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Numerical Relativity Using a Generalized Harmonic Decomposition does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Numerical Relativity Using a Generalized Harmonic Decomposition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Numerical Relativity Using a Generalized Harmonic Decomposition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-457192

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.