Mathematics – Statistics Theory
Scientific paper
2007-10-23
Electronic Journal of Statistics 2008, Vol. 2, 1242-1267
Mathematics
Statistics Theory
Published in at http://dx.doi.org/10.1214/07-EJS132 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by t
Scientific paper
10.1214/07-EJS132
Ordinary differential equations (ODE's) are widespread models in physics, chemistry and biology. In particular, this mathematical formalism is used for describing the evolution of complex systems and it might consist of high-dimensional sets of coupled nonlinear differential equations. In this setting, we propose a general method for estimating the parameters indexing ODE's from times series. Our method is able to alleviate the computational difficulties encountered by the classical parametric methods. These difficulties are due to the implicit definition of the model. We propose the use of a nonparametric estimator of regression functions as a first-step in the construction of an M-estimator, and we show the consistency of the derived estimator under general conditions. In the case of spline estimators, we prove asymptotic normality, and that the rate of convergence is the usual $\sqrt{n}$-rate for parametric estimators. Some perspectives of refinements of this new family of parametric estimators are given.
No associations
LandOfFree
Parameter estimation of ODE's via nonparametric estimators does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Parameter estimation of ODE's via nonparametric estimators, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Parameter estimation of ODE's via nonparametric estimators will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-455767