Astronomy and Astrophysics – Astrophysics
Scientific paper
2001-12-18
Astron.Astrophys. 385 (2002) 647-670
Astronomy and Astrophysics
Astrophysics
24 pages, 55 figures
Scientific paper
10.1051/0004-6361:20020173
We study the evolution of embedded protoplanets in a protostellar disk using very high resolution nested-grid computations. This method allows us to perform global simulations of planets orbiting in disks and, at the same time, to resolve in detail the dynamics of the flow inside the Roche lobe of the planet. The primary interest of this work lies in the analysis of the gravitational torque balance acting on the planet. For this purpose we study planets of different masses, ranging from one Earth-mass up to one Jupiter-mass, assuming typical parameters of the protostellar disk. The high resolution of the method allows a precise determination of the mass flow onto the planet and the resulting torques. The obtained migration time scales are in the range from few times 10^4 years, for intermediate mass planets, to 10^6 years, for very low and high mass planets. Typical growth time scales depend strongly on the planetary mass, ranging from a few hundred years, in the case of Earth-type planets, to several ten thousand years, in the case of Jupiter-type planets.
D'Angelo Gennaro
Henning Thomas
Kley Wilhelm
No associations
LandOfFree
Nested-grid calculations of disk-planet interaction does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Nested-grid calculations of disk-planet interaction, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nested-grid calculations of disk-planet interaction will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-43819