Stellar Kinematics of Young Clusters in Turbulent Hydrodynamic Simulations

Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

5 pages, 4 figures, accepted to ApJL

Scientific paper

The kinematics of newly-formed star clusters are interesting both as a probe of the state of the gas clouds from which the stars form, and because they influence planet formation, stellar mass segregation, cluster disruption, and other processes controlled in part by dynamical interactions in young clusters. However, to date there have been no attempts to use simulations of star cluster formation to investigate how the kinematics of young stars change in response to variations in the properties of their parent molecular clouds. In this letter we report the results of turbulent self-gravitating simulations of cluster formation in which we consider both clouds in virial balance and those undergoing global collapse. We find that stars in these simulations generally have velocity dispersions smaller than that of the gas by a factor of ~ 5, independent of the dynamical state of the parent cloud, so that subvirial stellar velocity dispersions arise naturally even in virialized molecular clouds. The simulated clusters also show large-scale stellar velocity gradients of ~0.2-2 km s$^{-1}$ pc$^{-1}$ and strong correlations between the centroid velocities of stars and gas, both of which are observed in young clusters. We conclude that star clusters should display subvirial velocity dispersions, large-scale velocity gradients, and strong gas-star velocity correlations regardless of whether their parent clouds are in virial balance, and, conversely, that observations of these features cannot be used to infer the dynamical state of the parent gas clouds.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Stellar Kinematics of Young Clusters in Turbulent Hydrodynamic Simulations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Stellar Kinematics of Young Clusters in Turbulent Hydrodynamic Simulations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stellar Kinematics of Young Clusters in Turbulent Hydrodynamic Simulations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-424460

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.