Interaction of the magnetorotational instability with hydrodynamic turbulence in accretion disks

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

ApJ, in press

Scientific paper

10.1086/591118

Accretion disks in which angular momentum transport is dominated by the magnetorotational instability (MRI) can also possess additional, purely hydrodynamic, drivers of turbulence. Even when the hydrodynamic processes, on their own, generate negligible levels of transport, they may still affect the evolution of the disk via their influence on the MRI. Here, we study the interaction between the MRI and hydrodynamic turbulence using local MRI simulations that include hydrodynamic forcing. As expected, we find that hydrodynamic forcing is generally negligible if it yields a saturated kinetic energy density that is small compared to the value generated by the MRI. For stronger hydrodynamic forcing levels, we find that hydrodynamic turbulence modifies transport, with the effect varying depending upon the spatial scale of hydrodynamic driving. Large scale forcing boosts transport by an amount that is approximately linear in the forcing strength, and leaves the character of the MRI (for example the ratio between Maxwell and Reynolds stresses) unchanged, up to the point at which the forced turbulence is an order of magnitude stronger than that generated by the MRI. Low amplitude small scale forcing may modestly suppress the MRI. We conclude that the impact of hydrodynamic turbulence on the MRI is generically ignorable in cases, such as convection, where the additional turbulence arises due to the accretion energy liberated by the MRI itself. Hydrodynamic turbulence may affect (and either enhance or suppress) the MRI if it is both strong, and driven by independent mechanisms such as self-gravity, supernovae, or solid-gas interactions in multiphase protoplanetary disks.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Interaction of the magnetorotational instability with hydrodynamic turbulence in accretion disks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Interaction of the magnetorotational instability with hydrodynamic turbulence in accretion disks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interaction of the magnetorotational instability with hydrodynamic turbulence in accretion disks will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-407681

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.