Astronomy and Astrophysics – Astrophysics
Scientific paper
2008-06-09
Astronomy and Astrophysics
Astrophysics
6 pages, 6 figures, accepted to A&A. Astronomy and Astrophysics (2008) in press
Scientific paper
10.1051/0004-6361:200809522
Aims: In order to understand the first stages of planet formation, when tiny grains aggregate to form planetesimals, one needs to simultaneously model grain growth, vertical settling and radial migration of dust in protoplanetary disks. In this study, we implement an analytical prescription for grain growth into a 3D two-phase hydrodynamics code to understand its effects on the dust distribution in disks. Methods: Following the analytic derivation of Stepinski & Valageas (1997), which assumes that grains stick perfectly upon collision, we implement a convenient and fast method of following grain growth in our 3D, two-phase (gas+dust) SPH code. We then follow the evolution of the size and spatial distribution of a dust population in a classical T Tauri star disk. Results: We find that the grains go through various stages of growth due to the complex interplay between gas drag, dust dynamics, and growth. Grains initially grow rapidly as they settle to the mid-plane, then experience a fast radial migration with little growth through the bulk of the disk, and finally pile-up in the inner disk where they grow more efficiently. This results in a bimodal distribution of grain sizes. Using this simple prescription of grain growth, we find that grains reach decimetric sizes in 10^5 years in the inner disk and survive the fast migration phase.
Fouchet Laure
Gonzalez Jean-François
Laibe Guillaume
Maddison Sarah T.
No associations
LandOfFree
SPH simulations of grain growth in protoplanetary disks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with SPH simulations of grain growth in protoplanetary disks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and SPH simulations of grain growth in protoplanetary disks will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-400690