Prompt GRB emission from gradual energy dissipation

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

9 pages, 3 figures, A&A, small changes to match the accepted Paper

Scientific paper

10.1051/0004-6361:20079085

I calculate the emission expected from a Poynting-flux-dominated gamma-ray burst (GRB) flow in which energy is dissipated gradually by magnetic reconnection. In this picture, the energy of the radiating particles is determined by heating and cooling balance (slow heating model). Detailed radiative transfer calculations show that, at Thomson optical depths of order of unity, the dominant radiative process is inverse Compton scattering. Synchrotron-self-absorbed emission and inverse Compton dominate in the Thomson thin parts of the flow. The electrons stay thermal throughout the dissipation region because of Coulomb collisions (Thomson thick part of the flow) and exchange of synchrotron photons (Thomson thin part). The resulting spectrum naturally explains the observed sub-MeV break of the GRB emission and the spectral slopes above and below the break. The model predicts that the gamma-ray power-law tail has a high-energy cutoff typically in the ~0.1-1 GeV energy range that should be observable with {\it GLAST}. The model also predicts a prompt emission component in the optical and UV associated with the GeV emission. Observations of the prompt emission of GRB 061121 that cover the energy range from the optical to ~1 MeV are explained by the model.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Prompt GRB emission from gradual energy dissipation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Prompt GRB emission from gradual energy dissipation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Prompt GRB emission from gradual energy dissipation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-3969

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.