Mathematics – Combinatorics
Scientific paper
2008-11-14
Mathematics
Combinatorics
20 pages, 18 figures
Scientific paper
Each straight infinite line defined by two vertices of a finite square point lattice contains (covers) these two points and a - possibly empty - subset of points that happen to be collinear to these. This work documents vertex subsets of minimum order such that the sum of the infinite straight lines associated with the edges of their complete subgraph covers the entire set of vertices (nodes). This is an abstraction to the problem of sending a light signal to all stations (receivers) in a square array with a minimum number of stations also equipped with transmitters to redirect the light to other transmitters.
Mathar Richard J.
No associations
LandOfFree
Finite Square Lattice Vertex Cover by a Baseline Set Defined With a Minimum Sublattice does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Finite Square Lattice Vertex Cover by a Baseline Set Defined With a Minimum Sublattice, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Finite Square Lattice Vertex Cover by a Baseline Set Defined With a Minimum Sublattice will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-39135